If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-4=46
We move all terms to the left:
x^2+8x-4-(46)=0
We add all the numbers together, and all the variables
x^2+8x-50=0
a = 1; b = 8; c = -50;
Δ = b2-4ac
Δ = 82-4·1·(-50)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{66}}{2*1}=\frac{-8-2\sqrt{66}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{66}}{2*1}=\frac{-8+2\sqrt{66}}{2} $
| 13k-10k-3k+4k+2=18 | | 6(4+5a)+10a=10(1-6a)-6 | | x^2+8x+4=46 | | 180=3x+93+60 | | -12n+18=-11n-17 | | 3+4+5(2d-3)=7.5 | | 21r-7-(r+5)=-52 | | 360=2x+x+2x+x | | 1/3b-2/5=-2 | | -2+3(x+6)=13 | | 2b+b-2=10 | | 180=3x+65+43 | | 18c-9c-8c+3=19 | | A=(14-2x)(18-2x) | | 4.9=30k/16 | | 2(x+4)=4(4x+9) | | 180=3x+104+64 | | 2x+3+2x-8+x=180 | | 9x+7+16x-28=0 | | 8x-6=19x-3 | | 4h=—44 | | 8=-4x+24 | | 180=2x+48+84 | | 3+7(x-5)=4x-19+3x | | N+2=14=n | | 2x+3=2x-8+x=180 | | 9n=–7+10n | | 5(2x+9)=50 | | -7-(-14)=x/7 | | 9x+7=16x-28 | | -7+5r=-12 | | (5y)/2=15/4 |